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New methods are described for the solution of large systems of linear equations for nonsym- 
metric matrices which arise in molecular calculations. The methods use the interaction matrix 
procedure in Lanczos-like algorithm previously applied to the eigenvalue problems. The 
efficiency of the methods is examined using test calculations. 0 1989 Academic Press, Inc. 

I. INTRODUCTION 

The solution of linear systems of large dimensionality arises in many molecular 
calculations. Our symmetry adapted cluster (SAC) theory [l] for calculating elec- 
tron correlations requires the solution of linear equations. In the SAC approach, 
the exact wave function Y is expressed as a cluster expansion in the neighborhood 
of an independent particle wave function @, 

Here, Sj is a linked cluster operator which produces i-fold symmetry adapted 
excited configurations when operating on @. The Schrodinger equation, HY = EY, 
is projected against a sufficient set of excited functions to generate a series of 
coupled linear equations 

(SjJepSHeSI)=O 

or, in the matrix notation, 

A+Ba+Caa=O. 

Here, the matrices A, B, and C arise, respectively, from the zero-, one-, and two- 
commutator terms and {xi} are now viewed as the unknown coefficients. The total 
energy is given by 

(le-SHeSI)=E 
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or, in the matrix notation, 

E= Au. 

The solution of linear systems of small dimensionality is carried out by Gauss 
elimination for arbitrary matrices or Cholesky decomposition for symmetric, 
positive definite matrices. These approaches become unsuitable, however, for large 
systems, whose coefficient matrix cannot be kept in fast core. 

In such a case, iterative algorithms, which require only one or a few matrix 
elements at a time in core and converge reasonably fast, are preferable. The most 
appropriate procedure must satisfy the following conditions: (1) It preserves the 
sparseness of the coefficient matrix throughout the calculation. (2) It can easily be 
handled in pieces. Matrices of very large dimension must be kept on external 
storage in case they are not extremely sparse. Thus, the elements of one row (or one 
column) are needed at a time and different rows (columns) are needed in a sequen- 
tial order. (3) The original coefficient matrix is not modified in the course of the 
calculation. (4) The expense of the arithmetic operation increases with twice the 
effective order of the coefficient matrix times the number of iterations needed to 
achieve convergence. 

Recently, two algorithms have been proposed. The method of Pople, Krishnan, 
Schlegel, and Binkley [2] has been formulated for coupled Hartree-Fock theory 
and successfully applied in Newton-Raphson MCSCF and CI perturbation theory. 
The reduced linear equation method of Purvice and Bartlett [3] has been exploited 
in their coupled cluster calculations. It has been proved [4] that these two methods 
are different version of the conjugate gradient method [S]. When the coefficient 
matrix is symmetric, the conjugate gradient method must be one of the most 
efficient procedures. Unfortunately when the coefficient matrix is nonsymmetric, the 
conjugate gradient method cannot be applied directly because it is based on the 
variational theorem and its convergence is often too slow. 

In view of the importance of the algorithm in correlation problems and in 
molecular properties, we derive alternative methods for a solution of a large system 
of linear equations. We have adapted the interaction matrix procedure previously 
applied to the eigenvalue problems by Davidson et al. [S]. The solution vector is 
sought in the subspace spanned by a Krylov sequence. The improved trial vector 
can be found by solving a linear problem of small order involving the interaction 
matrix in Lanczos-like algorithm. The method has been applied successfully to 
linear problems of various sizes of the recent investigation of the electron correla- 
tion problems for molecules by the cluster expansion theory. 

II. THEORETICAL BACKGROUND 

The algorithm will be developed for the general linear equation 

Ax=b, (1) 
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where x and b are column vectors and A is a diagonally dominant non-singular 
matrix of order N. We also consider the left-hand linear equation 

Ary = b, (2) 

where the superscript T denotes the transpose. In the CI and SAC calculations, the 
correlation energy is expressed as 

E= -bTX = -b=y. (3) 

Let the N * m matrices 

U’“‘= (u,, II*, . ..( u,) and V’“‘=(v,, vz,. v .., m ) 

represent two sets of vectors which obey the bi-orthogonal reltion 

(v’“‘)T u(m)= l(m) 
2 (4) 

where I’“’ is a m *m unit matrix. Assume that the subspaces spanned by the 
columns of Urn) and Vcrn) contain a good approximation to the solution vectors, x 
and y, respectively. These trial vectors are determined simultaneously as to give a 
fast convergence to the desired solution vectors. The projection of A onto subspaces 
gives the so-called interaction matrix defined by 

A(m) = (V(m,)T AU’“‘. (5) 

Suppose that the linear problems on the subspaces can be solved such that 

Acm)g(m) = g(,), (pQ)T y(m) = p’, (6) 

where 

6crn) = (V’“‘)T b, E’“‘= (U(m))T b. (7) 

This involves the direct solution of comparatively small m * m linear problems. 
Equations in (6) are easily seen to be equivalent to 

(vW)T AU’“’ j7’“‘= (,b”)T b 

(uW))T ATV(m)j,(m) = (u(m))T b. (8) 

The approximation consists in replacing the linear problems for (1) and (2) by 
problems of the same type of (6). When m= N, two linear problems become 
identical. Even when m is much smaller than N, we could obtain the desired 
solutions of (1) and (2) to a good approximation if the subspaces are well chosen. 

We can improve the approximate solutions xcrn) and ycm), 

X(m) = U(rn)jZh) 3 y’“’ = v’m’y (9) 
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by expanding the subspaces, that is, by adding new vectors u@+ ‘) and v@+ ‘) to the 
original sets. The new vectors are generated such that the residual vectors will 
converge to zero. The residual vectors qr and q, satisfy 

A(x’“’ + q;‘@) = b, AT( ycm) + q lm)) = b. (10) 

Then we can approximate 
q’“+“=D~‘(b-AU’“‘jT’“‘) r 
qj”+“=D~‘(b-ATV’“$‘“‘), (11) 

where D represents the diagonal part of A, If xc”‘) and y(“‘) are exact solutions, then 
q’“’ = 0. Thus, the size of q@‘) measures the accuracy of the solutions. The energy 
in the m th iteration is given by 

EC”‘= --T$m) _ _ -eTj+). (12) 

It is convenient to bi-orthogonalize the predicted vectors before a further round 
of iteration. The current vectors can be bi-orthogonalized according to 

(13) 

Arbitrary scaling factors can be applied to each vector to give 

(vh+l) T (m+l)- 1 )u - 

in practice, u(“‘+ ‘) and v(~+‘) can be chosen such that 

(14) 

where 

U(m+l)=d(m+l)/IIgm+lII r 
v(m+l)=d~m+l)/llgm+lII (15) 

9 

g (m+I)=(d;“+l)Tdm+l 
r ’ (16) 

It is necessary to change the sign of one of the vectors if gmf ’ becomes negative. 
However, the bi-orthogonalization procedure is not essential since the trial 
vectors u@) and vcrn) constructed as above are Krylov sequences and are linearly 
independent. 

If the A is symmetric, the two sets UC”’ and V’“’ are identical and U’“’ is made 
orthogonal at each stage. 

Convergence is achieved if )( q’“‘(l becomes less than a given threshold. When m 
becomes inconveniently large, the current sets of xcrn) and y(“‘) in (9) can be taken 
as the new initial vectors and the calculation is restarted. This is an update process. 
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An alternative approach is possible with the orthonormal basis. Consider the 
matrix Urn) having the orthonormal vectors 

Urn) = (u,, u2, ,.,) II,) (17) 
with 

(u’“‘)T ~‘“1 =I@). (18) 

Assume that the desired solution x can be expressed to a good approximation as 
a linear combination of these trial vectors. In this case, we will pay attention to 
only the right-hand linear equation of (1). Form the interaction matrix of order m, 

A(m)= (U(m’)T AU’“‘. (19) 

Suppose that the linear problem on the subspace can be solved such that 

A(m)g(m) = gem, 3 (20) 
where 

gem’= (U(m’)T b. (21) 

The subsequent vector II@“+ I) can be found by Schmidt-orthogonalization of the 
residual vector q (m+ ‘) to all the previous vectors. The residual vector q’“+ ‘) is 
defined similarly as above by 

q(m+ I)= D-l(b-AU(m’$m)). , (22) 

It is useful to orthogonalize u(~+” to the other vectors, 

d(m+l’, 
[ 

,fil (I- uicui)T~] P+‘) 

b(m+l)=d(m+I’/IId(m+I’,,. 
(23) 

This approach becomes equivalent to the reduced linear equation method [3] 
when we precondition the linear equation and use the Jacobi recursion relation. 

The convergence rate depends on the diagonal dominance of A. One of the 
advantages of this method is that the elements of A need not be used in any specific 
sequence. A is defined as an operator without giving its explicit matrix representa- 
tion, which makes this method useful for those direct SAC techniques [7] which 
proceed directly from orbital integrals to the solution without forming an explicit 
A matrix. In addition, the method can handle the sparsity of the matrix efficiently. 

When b is a block sequence of column vectors and several solutions are wanted, 
it is very useful to extend the present method to find several solutions at a time. 
In this case several solutions are expanded in a block sequence of orthonormal 
(bi-orthogonal) vectors simultaneously as to give a fast convergence to the desired 
solutions. These extended algorithms may have more powerful convergence proper- 
ties than the original one because the relative interference of the solution vectors 
can be removed at each iteration. 
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III. COMPUTATIONAL DETAILS 

(i) ALGORITHM. With two sets of bi-orthogonal vectors. 

A. Select zero-order two sets of bi-orthogonal vectors 

U’“‘= (II,) u*, . ..) u,) and Vm) = (V,) v2, . ..) v,) 

spanning the dominant components of the full solution of the right-hand and left- 
hand linear equations. Form and save Aui, ATvi= (vTA)=, bi= (v~)~ b, Zi= (u~)~ b 
and A, = (v~)~ Au, (1 < i, j < m). Solve the small linear problem A% = 6 and A’y = Z 
using a direct method, say, the Gauss elimination or the Cholesky decomposition. 

B. Form 

q:= f D-‘[b,-(Au;)$] 
i=l 

M 

qj”= 1 D-‘[bi- (ATv,) y,]. 
i= I 

Here A4 is the dimension of .&. 

C. Form (( qf” (( and I( q/M I( and check convergence. 
D. Form 

E. Form and save 

U M+, =,f”+‘/[d,“+‘d~+1]1/2 

V M+, =d;M+*/[d~+ldf”+l]“? 

F. Form and save AuM+I, ATv,+,, bM+,=(vM+,)Tb, and SM+r= 
(u M+dTb- 

G. Form and save 

A -(v M+I.M+I - M+I)~AUM+I 

k,Mf 1 = CVilT AuM + 1 

A -(vM+,ITAui, M+l.i- i = 1) 2, . ..) M. 

H. Solve the (M + 1 )-dimensional linear equations ArZ = 6 and XT9 = E and 
obtain solutions 2 and y. Update the vector if necessary and return to step B. 



238 K. HIRAO 

When the convergence is achieved, the solution vector is given by 
M 

x = c Vi& y= z u,j;;. 
i= I i=l 

Steps D and E can be skipped. In this case, q:“’ and 41”“’ become new trial vectors. 

(ii) ALGORITHM. With orthonormal vectors. 

A. Select a zero-order orthonormal subspace 

I.P) = (U,) u 2, ...? urn) 

spanning the dominant components of the full solution of the linear equation. Form 
and save Au;, bi= (ui)= b, and Ai, = (ui)= Aui (1 Q i,j<m). Solve the small linear 
problem Ajz = 6. 

B. Form 

q”= $ Dp’[b,- (Ab;) jii]. 
i= I 

Here M is the dimension of A. 
C. Form 11 qM /I and check convergence. 
D. Form 

d M+l= i (I-ui(ui)‘) q”. 
i= 1 1 

E. Form and save 

U -d Mfl - M+‘/lld”+‘I/. 

F. Form and save AuM+, and 6,+,+ i = (u,+,+ ,)= b. 

G. Form and save 

A -(uM+I)‘AuM+I M+l,M+I - 

&,M+I=(“/)=A”M+I 

;i M+,,i=(~M+l)TAui, i= 1, 2, . . . . M. 

H. Solve the (M + l)-dimensional linear equation Ajz = 6 and obtain the 
solution 5. Update the vector if necessary and return to step B. 

When the convergence is obtained, the solution vector is given by 
M 

x= ,y u,%,. 

i= I 

Steps D and E can be skipped. In this case, q (M) becomes a new trial vector. 
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IV. TEST RESULTS 

Since the method requires only to form Ani(ATvi) and ufb (v:b) for any given 
vector ui (vi) and the orthogonal (bi-orthogonal) basis can be generated by sequen- 
tial vector matrix multiplication, the algorithm is well suited to large or gigantic 
linear problems. 

The present algorithm has been applied to several linear problems of various 
sizes in the recent investigation of the electron correlation problems by the cluster 
expansion of the wavefunction. We found that the present method is very effective 
and no convergence difficulties arise. As an example, we summarized in Tables I 
and II the results of the convergence process for the ground states of H,O SAC 
problems with single, double, and triple excitations at two geometries, at the equi- 
librium bond distance, R, and at the stretched bond distance, 2.0 * R,. The coef- 
ficient matrices are both nonsymmetric with dimension N= 1041 and 1052, respec- 

TABLE I 

The Solution of 1041-Dimensional SAC problem for H,O with R = R, Using Double 
Zeta Basis Se@ 

CYCI e Orthonormal basis Bi-orthogonal basis 

number - E (au) nsn - E (au) In,l llqln 

1 0.14719229 0.01350357 0.14718667 0.01350357 0.01248906 

2 0.14719935 0.00382265 0.14719987 0.00389647 0.00220823 

3 0.14720137 0.00157605 0.14720162 0.00139455 0.00096340 

4 0.14720233 0.00069611 0.14720232 0.00064449 0.00040754 

5 0.14720254 0.00029178 0.14720246 0.00027922 0.00019912 

6 0.14720250 0.00012399 0.14720247 0.00010611 0.00007535 

7 0.14720246 0.00005966 0.14720247 0.00005194 0.00003426 

8 0.14720247 0.00002945 0.14720247 0.00002819 0.00001598 

9 0.14720248 0.00001563 0.14720247 0.00001355 0.00000852 

10 0.14720247 0.00000846 0.14720247 0.00000799 0.00000457 

11 0.14720247 0.00000370 0.14720247 0.00000386 0.00000202 

12 0.14720247 0.00000180 0.14720247 0.00000161 0.00000097 

13 0.14720247 0.00000099 0.14720247 0.00000067 0.00000054 

14 0.14720247 0.00000047 0.14720247 0.00000050 0.00000029 

15 0.14720247 0.00000023 0.14720247 0.00000035 0.00000019 

16 0.14720247 0.00000010 0.14720247 '0.00000036 0.00000020 

17 0.14720247 0.00000005 0.14720247 0.00000067 0.00000036 

18 0.14i20247 0.00000002 0.14720247 0.00000007 0.00000004 

19 0.14720247 0.00000001 0.14720247 0.00000002 0.00000001 

20 0.14720247 0.000000005 0.14720247 0.000000008 0.000000004 

” The energies are relative to the SCF energy, -76.00984 au. 
h It takes 40 iterations to achieve an S-digit accuracy of -E and 52 iterations to 

achieve I( q (1 < lo-’ by a preconditioned conjugate gradient method. 
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TABLE II 

The Solution of 1052-Dimensional SAC Problem for H,O with R = 2.0 * R, 
Using Double Zeta Basis Set”.’ 

Cycle Orthanormal basis Bi-orthogonal basis 

number -E (au) nsn -E (au) fqrll nq(ll 

1 

2 

3 

4 

5 

6 

7 

6 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

26 

26 

27 

28 

0.33209822 0.15591557 

0.33389499 0.07856317 

0.33465386 0.03867268 

0.33472254 0.01604181 

0.33473138 0.00885434 

0.33473468 0.00418533 

0.33474718 0.00206262 

0.33475621 0.00103402 

0.33476173 0.00055670 

0.33476366 0.00031799 

0.33476438 0.00014297 

0.33476427 0.00006449 

0.33476393 0.00003396 

0.33476395 0.00001920 

0.33476385 0.00001025 

0.33476383 0.00000479 

0.33476384 0.00000217 

0.33476384 0.00000112 

0.33476384 0.00000064 

0.33476384 0.00000027 

0.33476384 0.00000015 

0.33476384 0.00000009 

0.33476384 0.00000005 

0.33476384 0.00000002 

0.33476384 0.00000001 

0.33476384 0.000000007 

0.33316821 0.15591557 0.08067728 

0.33307836 0.11311221 0.08128108 

0.33472402 0.08868100 0.05897184 

0.33467527 0.04036891 0.03086299 

0.33475697 0.01~50013 0.01635421 

0.33475657 0.01844502 0.01699863 

0.33476277 0.01441450 0.01306801 

0.33476336 0.00185523 0.00199128 

0.33476378 0.00180426 0.00192779 

0.33476383 0.00093607 0.00073097 

0.33476383 0.00030991 0.00027678 

0.33476384 0.00125184 0.00109523 

0.33476384 0.00011048 0.00011070 

0.33476384 0.00008223 0.00007033 

0.33476384 0.00003208 0.00003969 

0.33476384 0.00001564 0.00001631 

0.33476384 0.00002664 0.00003347 

0.33476384 0.00000421 0.00000411 

0.33476384 0.00000614 0.00000627 

0.33476384 0.00000622 0.00000634 

0.33476384 0.00000227 0.00000204 

0.33476384 0.00000035 0.00000025 

0.33476384 0.00000018 0.00000011 

0.33476384 0.00000022 0.00000018 

0.33476384 0.00000006 0.00000005 

0.33476384 0.00000004 !I. 00000003 

0.33476384 0.00000002 0.00000001 

0.33476384 0.000000005 0.000000004 

d The energies are relative to the SCF energies, -75.59519 au. 
h It takes 64 iterations to achieve an I-digit accuracy of-E and 75 iterations to 

reach //q )I < lo-’ by a preconditioned conjugate gradient method. 

tively. We used as the convergence test /I qM I/ < lo-‘. We started with only one trial 
vector, u, (v, ) which is obtained by the SDT-CI calculation. If there is no good 
initial guess, the initial approximate vector can be generated by b * D -‘. For the 
sake of comparison, solutions were also computed by the conjugate gradient 
method for nonsymmetric cases. That is, the product ATA, which is symmetric and 
positive definite, is constructed and the symmetric linear equation, ATAx = ATb, is 
solved by a preconditioned conjugate gradient method. The tables show that the 
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algorithms proposed here have very good convergence properties. In the method 
with the orthonormal basis, I/ q 11 decreases monotonically and apparently becomes 
less than a threshold in fewer iterations than that of the method with a bi- 
orthogonal basis. However, as to the energy, the latter method converges faster 
than the former method. It takes 6 (12) iterations to achieve an &digit accuracy in 
the latter method and 10 (17) iterations in the former method in Table I (Table II). 
The method with bi-orthogonal basis solves the right-hand and left-hand linear 
equations simultaneously. Thus, the subspaces generated are well balanced, which 
may accelerate the convergence. 

In Table III results are shown for the two SAC problems for SiH, and C,H,. 
The order of the matrices are 16800 and 45678, respectively (we did not use spatial 
symmetry). The linear equations are solved by a present method with orthonormal 
vectors. The initial trial vector u, is generated by the SD-C1 vector. Large scale 
calculations show a similar behavior. Convergence of the iterative step was essen- 
tially immediate (5 iterations to get an S-digit accuracy in energy). 

In summary, we feel that the present algorithms represent both a practical and 
efficient approach to solving the large scale symmetric and nonsymmetric linear 
equation problems. 

TABLE III 

The Solutions of the SAC Problems for 16800-dimensional SiH, and 45678-dimen- 
sional C,H,” 

Cycle SIt$ (5s3pld/Zs) basis 

number - E (au) Isl 

C2H4 (4sZpld/3slp) basis 

- E (au) nsn 

1 0.12796328 0.02533600 0.24434121 0.01391064 

2 0.13425669 0.00595869 0.25546304 0.00295669 

3 0.13429248 0.00141847 0.25549774 0.00051597 

4 0.13429457 0.00032668 0.25549839 0.00010278 

5 0.13429461 0.00007244 0.25549843 0.00001753 

6 0.13429461 0.00001546 0.25549843 0.00000403 

7 0.13429461 0.00000382 0.25549843 0.00000063 

8 0.13429461 0.00000095 0.25549843 0.00000014 

9 0.13429461 0.00000021 0.25549843 0.00000002 

10 0.13429461 0.00000004 0.25549843 0.000000005 

I1 0.13429461 0.000000008 

y The energies are relative to the SCF energy, SiH,= -289.683340 au and 
C2H4 = -74.064833 au. 

581/80/l-16 
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